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Abstract: This study presents the Fourier Decay Perception Generative Adversarial Network
(FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging
stemming from restricted sensor availability and biological tissue heterogeneity. By integrating
diverse photoacoustic data, FDP-GAN notably enhances image fidelity and reduces artifacts,
particularly in scenarios of low sampling. Its demonstrated effectiveness highlights its potential
for substantial contributions to clinical applications, marking a significant stride in addressing
pertinent challenges within the realm of photoacoustic acquisition techniques.
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1. Introduction

The field of bioimaging has seen increasing use of photoacoustic imaging, a non-invasive
hybrid imaging method, thanks to its swift advancement in recent years. Photoacoustic imaging
(PAI) encompasses two forms of imaging: Photoacoustic Microscopy (PAM) and Photoacoustic
Tomography or Computed Tomography (PAT/PACT) [1]. PAM provides high-resolution images
of superficial tissues, whereas PAT is optimal for deep tissue exploration. As a result, PAT has
broad application prospects in various biomedical imaging diagnostic fields, such as early cancer
detection [2], cellular imaging [3], biopsy guidance [4], and more.

Practical implementation of PAI often encounters challenges due to less-than-ideal sampling
of tomographic data. Acquiring high-quality images usually necessitates a higher number of
transducers during data acquisition, but this solution is accompanied by higher costs, escalated
hardware complexity, and a demand for greater computational power. Consequently, a more
feasible approach limits the number of transducers and conducts measurements under sparse
viewing conditions. However, sparse-view photoacoustic imaging, while reducing system
intricacy and cost, may result in compromised image quality, exhibiting artifacts and blurring.
Complications also arise during live imaging, as the movement of the organism can introduce
image artifacts, thus undermining the image quality. These factors play a crucial role in enhancing
the accuracy and sensitivity of neuronal activity detection [5,6]. In multispectral photoacoustic
tomography, changes in excitation wavelengths at a given location may result in motion artifacts,
affecting the resolution of photoacoustic results and quantitative analysis. Additionally, neglecting
acoustic heterogeneity can have negative consequences on the resolution and image quality
unless properly mitigated using appropriate reconstruction algorithms [7–9]. The constraints of
transducer scan range and sparse viewing angle during sampling typically result in compromised
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image acquisition quality [6,10]. These challenges drive the research community’s ongoing
efforts to enhance the resolution, speed, sensitivity, and depth of photoacoustic and tomographic
imaging. The critical issue of noise reduction and artifact elimination in photoacoustic images
derived from limited and sparse views continues to be a key focus in contemporary research.

In recent decades, artificial intelligence (AI) has become a research hotspot, and its application
in medical imaging, particularly deep learning, has gained significant attention from researchers
and clinicians. Photoacoustic imaging has also benefited from advances in AI, especially in
PAI reconstruction technology. Efficient reconstruction methods based on deep learning, such
as U-Net, Generative Adversarial Networks (GAN), and Transformers, have been successfully
applied by researchers in medical image processing [11–14]. For instance, Neda Davoudi et
al. [10] proposed a novel framework for deep convolutional neural networks to recover image
quality from sparse photoacoustic data, eliminating some reconstruction artifacts present in
sparsely sampled data. This method accelerates data acquisition and image reconstruction
processes by reducing common image artifacts, enhancing anatomical contrast, and improving
image quantization capabilities. Stephan Antholzer et al. [13] developed a straightforward and
efficient reconstruction algorithm based on deep learning. In this method, image reconstruction
is performed using a deep convolutional neural network (CNN) whose weights are adjusted prior
to the actual image reconstruction based on a set of training data. The proposed reconstruction
method can be interpreted as a network which uses PAT filtered inverse projection algorithm in
the first layer and then U-net architecture in the remaining layers. Real image reconstruction
using deep learning requires only one evaluation of the trained CNN and does not require
time-consuming solving of the forward and concomitant problems. Steven Guan et al. [15]
proposed an improved CNN architecture called FD-UNet for removing artifacts from 2D PAT
images reconstructed from sparse data. FD-UNet and UNet were compared by using datasets
generated from synthetic models (circles, Shepp-Logan, and vasculature system) and anatomically
realistic datasets of the mouse brain vasculature system. FD-UNet proved to be the superior and
more compact CNN for removing artifacts and improving image quality.

Although systematic studies investigating the performance of deep learning methodologies
with varying detection angles at finite viewpoints exist, the efficacy of deep learning techniques
employing diverse numbers of transducers at sparse-view photoacoustic imaging (PA) remains
under-explored. In this context, we introduce an enhanced GAN methodology, the FDP-GAN,
and examine its efficacy for image reconstruction from various datasets under restricted viewing
angles. This work’s primary contributions include:

1. The FDP-GAN model, which is based on GAN architecture, undergoes training using a
cost function that incorporates regularization. Its distinctive feature is its capability to
restore image quality even with a limited number of transducers. To our knowledge, this
is the first instance of PA image quality restoration using such limited transducers and
manually added noise, which simultaneously reduces the technique’s cost and increases its
clinical utility.

2. We amplified the precision and generalizability of FDP-GAN by training and testing
the network on simulated and publicly available datasets. This approach mitigated
the requirement for substantial experimental training datasets, hence enhancing FDP-
GAN’s applicability in diverse scenarios. We also utilized three conventional metrics
to quantitatively evaluate FDP-GAN’s performance in different limited view situations
featuring representative structures.

3. We manually acquired photoacoustic data using the OR-PAM device and conducted exper-
iments on the PAM and PAT datasets to improve image quality from sparse data, revealing
that FDP-GAN can recover PA images without additional training, thus demonstrating its
versatility and broad applicability. In addition, the ability of FDP-GAN to run without
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retraining saves computational resources and data storage space, making it suitable for
practical clinical applications.

The paper’s structure is as follows: Section 2 elaborates on the methodology employed to
create and construct the simulation datasets, and delves into the network structure model utilized.
Section 3 describes the detailed procedure of this experiment and uses metrics to evaluate the
image reconstruction results. The results and discussion of this work are presented in Sections 4
and 5, respectively.

2. Materials and methods

2.1. Datasets preparation

This study employed two data acquisition methods. Firstly, optical-resolution photoacoustic
microscopy (OR-PAM) was utilized to acquire photoacoustic data. These data were derived
from dragonfly wings [16,17] and magpie feathers [18–20], totaling approximately 1023 images,
comprising 203 high-quality, clear images, and 820 under-sampled and sparse images. These data
were employed for transfer learning of the model proposed in this study to assess its performance.
The OR-PAM system was configured as depicted in Fig. 1(ii), employing a pulsed laser with a
532 nm wavelength (VPFL-G-30, Spectra-Physics) featuring a pulse width of 7 ns and a pulse
energy of approximately 80 nJ. Initially, the laser beam was transmitted through a 2-meter single-
mode fiber (SMF, P1–460B-FC-2, Thorlabs Inc), with a coupling efficiency of approximately
60%, to the PAM probe. Subsequently, the beam combiner in the PAM probe reflected the light
onto the sample while transmitting the generated ultrasonic waves to a piezoelectric transducer
(V214-BC-RM, Olympus-NDT). As the light passed through a polarization beam splitter (PBS,
PBS051, Thorlabs Inc) and was transmitted to the SMF, it was tightly focused on the tissue
sample. The lateral resolution of the OR-PAM module in our system was approximately 4.5 µm.

(ii)(a) (b)
(c)

(d)(e)(f)

(i)

Fig. 1. Experimental System Diagram. Figure 1(i) delineates the comprehensive flowchart
of the experimental system, while Fig. 1(ii) provides a detailed exposition of the optical path
diagram employed in the experiment.

Our experimental procedure, as illustrated in Fig. 1(i), commences by situating samples
collected from natural environments onto the experimental platform. Subsequently, we initiate
photoacoustic wave generation through laser excitation, driven by tissue’s optical absorption
characteristics. The experimental setup, as delineated in Fig. 1(ii), encompasses pivotal
components for laser emission, photoacoustic wave generation, detection, data acquisition,
and subsequent computational processing. These resultant photoacoustic waves are then
systematically detected and imaged using ultrasound methodologies, enabling the extraction
of pertinent structural and functional information concerning the tissue. Temporal profiles
corresponding to individual stages of sample scanning are elucidated in Fig. 1(i-c), with
corresponding absorption spectra featured in Fig. 1(i-d). Photoacoustic images (Fig. 1(i-e))
provide visual insights into tissue morphology, while the pixel values (Fig. 1(i-f)) facilitate
quantitative analyse. After screening the acquired images, the processed set of datasets was
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divided into two subsets. One subset was dedicated to training the model using diverse deep
learning algorithms, while the other subset served as a test set to assess the model’s performance.

Secondly, this work also uses a publicly available dataset to validate the effectiveness of the
method on PAT image data from phantom imaging experiments performed by Neda Davoudi et al.
[10].This publicly available datasets from https://doi.org/10.6084/m9.figshare.9250784. Phantom
training data were generated by imaging paper-printed absorptive targets embedded in 16 mm
diameter agar cylinders. Agar substrates were prepared by diluting 1.3% (w/w) agar powder in
water. A total of 28 phantoms were measured, from which we collected 450 images by data
enhancement with random rotation and panning. For each phantom, the printing paper contained
three randomly distributed 2.5-mm-diameter black circles. Thirty-three phantoms consisting of
printed vascular structures adapted from images obtained using an OA microscope setup were
also measured, from which 100 images were collected by data enhancement with random rotation.
These images were acquired utilizing an 80 mm diameter, 512-element ring-shaped detector
array. These two data acquisition methods provide diverse data resources for transfer learning
and performance evaluation of the model in this study.

2.2. Framework of the FDP-GAN model

To enhance image details and address the smoothing tendency of traditional convolutional
networks in insufficient sampling conditions, this work use 16-256 transducers for image
enhancement. The meticulous selection of this specific sensor range is underpinned by its
profound impact on bolstering image fidelity and precision.

The FDP-GAN Model adeptly mitigates the smoothing tendency in traditional convolutional
networks under limited sampling. We added Fourier transform, decay function, perceptual loss
function, and L1 loss to the model to achieve better results in contour edges. This study is centered
on evaluating the efficacy of FDP-GAN networks when operating under conditions characterized
by limited sampling, specifically employing a configuration involving only a low number of
sensor configurations. The FDP-GAN network, developed in this study, was specifically tailored
for the mice dataset gathered during the PAT experiment. Its impressive level of generalization
was thoroughly validated on the PAM dataset.

The framework of the FDP-GAN network architecture model is illustrated in Fig. 2. The
process can be quantitatively expressed as:

LGAN(G, D) = Ey[logD(y)] + Ex,z[log(1 − D(G(x, z))]] (1)

To address the unsuitability of unsupervised GAN networks, which are based on the random
generation of noise, for paired low and high sampling datasets, we have employed a conditional
adversarial generative network (CGAN) based on a Pix2Pix model as the underlying backbone
network. The process is illustrated in Eq. (2). This approach enhances the robustness and stability
of the generation process, ensuring reliable results.

LcGAN(G, D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x,z))]] (2)

This work demonstrates that the FDP-GAN model is effective in denoising PA data. [21] Unlike
traditional GAN models, the Pix2Pix GAN model requires paired data for training. Specifically,
the discriminator is trained on both <x, y> and <x, G(x)> pairs, where G(x) represents the output
image generated by the generator from the input image x The objective of training the Pix2Pix
GAN model is to minimize the following loss function:

LL1 (G) = Ex,y,z[∥ y − G(x, z)∥1] (3)

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (4)

https://doi.org/10.6084/m9.figshare.9250784
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Fig. 2. Structure of the network of FDP-GAN.

where the terms LcGAN and LL1 represent the CGAN loss and L1 distance, respectively. The
expected value is denoted by E, where z represents a random noise vector of the same shape as
x. The real sample is represented by y, while G and D refer to the generator and discriminator
networks, respectively.

Emulating a classical and proficient discriminator architecture, the FDP-GAN network
incorporates a structure with five hidden layers. The image passes through the discriminator to
obtain a patch of a 32×64 matrix, and the closer the matrix is to the 1 matrices of 32×64, the
more the generated image can confuse the discriminator, indicating that the generated image is
similar to the real sample. Conversely, the closer the matrix is to the 0 matrix of 32×64, the more
likely the discriminator is to judge the generated image as a non-real sample.

In the network structure design, we use the “broadcast” mechanism, which is a mechanism
for handling mathematical operations between tensors of different shapes. It allows arithmetic
operations to be performed by automatically expanding tensors with different shapes so that they
have the same shape, allowing element-by-element operations to be performed. The benefit of
this mechanism is that it allows us to save memory and computational resources by avoiding
explicit dimension expansion or replication when dealing with data of different shapes. Thus, the
loss function of our proposed FDP-GAN model is carefully designed as follows:

∇θd

1
m

∑︂m

i=1
[α∗L1Loss + BCELoss + γ∗FFTLoss + β∗PerceptualLoss] (5)

Figure 3 provides a detailed illustration. This approach ensures that the loss function can
directly align with the criteria of the input and target images. The network model was developed
using Python 3.9 and PyTorch-v2.0, an open-source deep-learning library. The network training
and evaluation were conducted on an NVIDIA GTX 2080Ti GPU. During the training process,
the mean square error loss was minimized using the Adam optimizer. The training utilized a
batch size of 2 and spanned 300 epochs, with an initial learning rate of 2e−4. During training,
the FDP-GAN model was provided with paired training datasets {xi, yi}, where xi represents the
input data, and yi represents the corresponding 512 sensor images. The specific pseudo-code for
training can be observed in Algorithm 1 and Algorithm 2:
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Algorithm 1. Generator Training
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2.2.1. FFT-Based loss

In the task of image recovery, it is crucial to capture both low and high-frequency information.
However, conventional Residual Blocks have limitations in incorporating high-frequency features.
To address this issue, we put forth the FFT+L1 configuration for evaluating loss, as illustrated in
Fig. 3. This structure incorporates two distinct branches: the time-honored L1 loss branch and
the innovative FFT branch.

Here, as illustrated in Fig. 3(a), the original input image undergoes a discrete Fourier transform
followed by spectral centering of the resulting spectral map. Most of the images are represented
as grayscale maps, where each pixel is assigned a grayscale value.
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However, conventional Residual Blocks have limitations in incorporating high-frequency features.
To address this issue, we put forth the FFT+L1 configuration for evaluating loss, as illustrated in
Fig. 3. This structure incorporates two distinct branches: the time-honored L1 loss branch and
the innovative FFT branch.

Here, as illustrated in Fig. 3(a), the original input image undergoes a discrete Fourier transform
followed by spectral centering of the resulting spectral map. Most of the images are represented
as grayscale maps, where each pixel is assigned a grayscale value.
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Fig. 3. The details of the proposed FDP-GAN model.

2.2.1. FFT-based loss

In the task of image recovery, it is crucial to capture both low and high-frequency information.
However, conventional Residual Blocks have limitations in incorporating high-frequency features.
To address this issue, we put forth the FFT+L1 configuration for evaluating loss, as illustrated in
Fig. 3. This structure incorporates two distinct branches: the time-honored L1 loss branch and
the innovative FFT branch.

Here, as illustrated in Fig. 3(a), the original input image undergoes a discrete Fourier transform
followed by spectral centering of the resulting spectral map. Most of the images are represented
as grayscale maps, where each pixel is assigned a grayscale value.

In this work, we mainly use the Fourier transform without the inverse transform to directly
approach the images in the frequency domain. The generated and labeled maps are computed
directly in the frequency domain space to obtain the L1 loss, which represents their distance in the
frequency domain space. The information reconstruction in the frequency domain is controlled
by gradient descent:

FFTLoss = |fft(log(G(x(i)))) − fft(log(y(i)))| (6)

where x(i) represents a batch of m samples randomly selected from a limited set of projections
{x(1), . . . , x(m)}, while y(i) represents a batch of m labels selected from a larger set of 512
projections {y(1), . . . , y(m)}.

2.2.2. Decay function

In the current research, decay functions [22,23] have become widely used to solve physical
problems. To compensate for some of the lost image edge information and highlight the edge
contours, we introduced the decay function into the training model [24]. By incorporating a
decay function [25] in the training model, we introduce a mechanism to mitigate this smoothing
effect. The decay function effectively controls the rate of decay at certain frequencies, allowing
us to prioritize the retention of high-frequency components associated with image edges.

In essence, the attenuation function acts as a correction to ensure that critical edge information
is preserved and faithfully rendered in the reconstructed image. This is especially important for
accurate reconstruction of fine details and structural features when data is sparse or sampling
is limited. Decay function limits the overall training loss value to below 0.1. This function is
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defined as follows:
γ = e

−x ln 2
100 (7)

where x stands for the epoch nums and the weight decay function employed in the Fourier
transform experiments is represented by the parameter γ. We utilized exponential decay with a
fixed half-life of 100 epochs to implement this function. Additional information on the specific
experimental setup can be found in Section 3.2.

2.2.3. Perceptual loss function

To rectify the issues of sparse views and indistinct edges encountered, we’ve implemented the
perceptual loss function put forth by Johnson et al. [26] The fixed network harnesses both ground
truth images and the network-produced results as inputs, facilitating the generation of output
features.

We employed the VGG16 module (depicted in Fig. 3(c)) for feature extraction in our FDP-GAN
architecture. The perceptual loss was derived from the output of four activation layers (highlighted
in red boxes), corresponding to sections outlined in blue in the FDP-GAN structure diagram. The
construction of the perceptual loss involved setting up a static network using a pre-trained VGG16
model on ImageNet, with parameters held constant during training. Subsequently, the actual
image (referred to as Ground Truth) and the network’s output (referred to as Prediction) were
input into the static network, producing output features designated as feature_gt and feature_pre.
The final step involved calculating the L2 distance between feature_gt and feature_pre to generate
a loss. This loss acts as an approximation of the depth information disparity between the actual
image and the network’s output, thereby enhancing detailed information beyond the typical L2
loss. Two key points should be noted in this process:

1. Loss Composition: The loss function of a generative network typically encapsulates a blend
of multiple losses, which together define the final loss function. This can be represented as:

Ltotal = αLrec + βLper (8)

where α and β are used as trade-off coefficients to adjust the importance of different losses
to the total loss function.

2. Perceptual Enhancement: The application of perceptual losses enhances the granularity
of the generated image, surpassing the outcomes solely driven by L2 loss. Given the real
image y and the generated image, the loss function can be expressed as follows:

y = (y1, y2, . . . , yN)
←y =

(︂
←y1,←y2, . . . ,←yN

)︂
(9)

Here, N corresponds to the sample size within a batch. The term N denotes the N th network
layer, symbolizing the output features of that respective layer.

3. Experiments and results

3.1. FDP-GAN method

3.1.1. Experimental setup

In this work, for the sake of consistent comparison, certain experimental parameters were
uniformly applied across different models. All models were created, trained, and evaluated using
the Pytorch platform with an NVIDIA GeForce RTX 2080Ti graphics card for computation.
During the training phase, we set the neural network’s momentum at 0.9, the batch size at 8,
and the learning rate at 0.0001. Also, we allowed a maximum of 300 epochs for the model
comparison. After conducting several experiments, we discovered that an initial learning rate of
2×10−4 was optimal.
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3.1.2. Data preprocessing

To ensure network convergence and facilitate seamless learning, it is imperative to apply data
normalization techniques, particularly when variations in distribution or scale of identical modal
features are anticipated. The images in the dataset were divided into a training set, comprising
80% of the data, and a test set, comprising the remaining 20%. The mean square loss is monitored
during validation. To prepare the training set, the artifact-damaged image X ∈ RN×N and the
artifact-free image Z ∈ RN×N are paired together as T = (Xm, Zm)

M
m=1, following standard neural

network theory. During the optimization process, the mapping function is determined based on
the training error:

∇θd

1
m

∑︂m

i=1
[α∗L1Loss + BCELoss + γ∗FFTLoss + β∗PerceptualLoss] (10)

The main goal of training neural networks is to minimize the aforementioned equations,
consequently lowering the training error or loss. However, to construct neural networks that have
a more direct correlation with the mapping function and can be designed in a systematically
manner, the establishment of a distinct and comprehensively defined framework is of utmost
importance:

Aw = (σL ◦WL) ◦ . . . .. ◦ (σ1 ◦W1) (11)

where σ represents the activation function, W denotes the weighting vector, and L corresponds
to the number of subsequent processing layers. The weighting vector is a critical parameter in
network optimization and is continually updated based on the reference image.

3.1.3. Evaluation metrics

To evaluate the performance of the FDP-GAN model, two quantitative measures were employed.
These included the widely recognized Structural Similarity Index (SSIM), which amalgamates
statistical measurements like mean, variance, covariance, and correlation, and the Peak Signal-to-
Noise Ratio (PSNR), both of which are classical criteria for evaluating image quality. The PSNR
offers a general quality assessment of the image, whereas the SSIM delivers local measurements,
taking into consideration elements like contrast, luminance, and structural resemblance.

PSNR = 20log10(255/RMSE) (12)

RMSE =

√︄
1
pq
∥ X − Xori ∥

2
F (13)

where p refers to the row count of the image, q corresponds to the column count of the image,
X stands for the image after reconstruction, and Xori is the benchmark or reference image.
SSIM is a measure designed to evaluate the visual impact of three characteristics of an image:
luminance, contrast, and structure. This perceptual metric identifies image quality degradation,
with structural information being described as interdependent pixels that are spatially close.

SSIM(x, y) = [l(x, y)]a.[ c(x, y)]b.[s(x, y)]γ (14)

The above parameters hinge on three different elements: l, which compares the brightness
of the predicted and original image; c, representing contrast; and s, comparing the structure of
the two images. Furthermore, a, b, and σ are positive constants, while x and y correspond to
the original and reconstructed images. The brightness, contrast, and structure are influenced by
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specific factors:

brightness: l(X, Xori) =
2µxµxori + C1

µ2
x + µ

2
y + C1

(15)

contrast: c(X, Xori) =
2σxσxon + C2

σ2
x + σ

2
xori + C2

(16)

structure: s(X, Xori) =
2σxxori + C3

σxσxori + C3
(17)

σXXori =
1

N − 1

∑︂N

j=1
(Xj − µx)((Xori)j − µxori ) (18)

where α1, α2, and α3 are weights, Xi denotes the ith pixel value that is used to construct the
image vector X, µx is the luminance estimate of X, σx is the contrast estimate of X, and C1, C2,
and C3 are constants. In this experiments, we set α1, α2, and α3 to 1, and C1, C2, and C3 to
C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2. The maximum pixel value of the image, denoted by
L, is typically 255 for grayscale images. By assigning small constants K1 and K2, specifically
k1 = 0.05 and k2 = 0.05. Enhanced reconstruction quality and accurate structure can be assessed
by analyzing the PSNR and SSIM, with higher values indicating better results.

3.2. Experimental result

3.2.1. Performance evaluation on PAM datasets

In the process of photoacoustic imaging, tissue heterogeneity leads to acoustic reflection and
imaging artifacts, which subsequently affect the imaging outcome. Acoustic reflection results in
the return of sound waves from the internal tissue, potentially interfering with clear imaging in the
target region. Concurrently, heterogeneity induces scattering of the sound waves within the tissue,
giving rise to artifacts in the image and diminishing the accuracy and clarity of the resulting
visualization. Therefore, a thorough understanding and management of tissue heterogeneity is
crucial in photoacoustic imaging.

We substantiate the FDP-GAN model’s generalizability through the utilization of manually
acquired OR-PAM data. The experimentally acquired image is depicted in Fig. 4, revealing
evident noise and a deficiency in edge details. We employed the FDP-GAN network structure to
reconstruct the experimental data. A comparative analysis of three specific regions, z1, z2, and
z3, illustrates marked improvements in image detail and sharpness. The quantitative evaluation
results of the images are presented in Table 1.

     

2.5μm

Z1 Z1

Z2 Z2

Z3 Z3

Network input Network output Groudtruth

Z1 Z2 Z3 Z1 Z2 Z3 Z1 Z2 Z3

Z1

Z2

Z3

2.5μm2.5μm2.5μm

(a) (b)

Fig. 4. PAM vascular images of feathers and dragonflies wings, acquired using the OR-PAM
experimental apparatus, were subjected to imaging transformation through the utilization of
the pre-trained FDP-GAN model. In Figs (a) and (b), the left column shows a zoomed-in
OR-PAM image. The middle column shows the image obtained after network training and
the right column shows the standard ground truth.
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Table 1. List of comparisons of different networks for different samplesa

Samples Raw CNN UNet ResCBAM TransUnet ResUnet pix2pix FDP-GAN

Feathers-ssim 0.515 0.602 0.661 0.674 0.709 0.667 0.742 0.773

Wings-ssim 0.445 0.526 0.551 0.601 0.676 0.622 0.707 0.739

Feathers-psnr 22.114 24.218 25.301 26.664 28.783 26.997 29.890 30.565

Wings-psnr 20.217 22.546 24.003 25.476 27.063 25.818 28.156 29.390

aSSIM = structural similarity index measure; PSNR = peak signal-to-noise ratio.

Table 2. Comparison of SSIM metrics for all three networks by using 256-, 128-, 64-, 32-, 16-, and
8-projection informationa

Network used 8-Projection 16-Projection 32-Projection 64-Projection 128-Projection 256-Projection

Raw 0.252 0.275 0.461 0.531 0.619 0.827

CNN(3 layers) 0.385 0.446 0.501 0.686 0.806 0.881

UNet(pure) 0.503 0.558 0.688 0.762 0.842 0.931

ResCBAM 0.530 0.566 0.710 0.808 0.889 0.950

TransUnet 0.536 0.571 0.707 0.770 0.849 0.938

ResUnet 0.537 0.572 0.709 0.775 0.848 0.946

pix2pix 0.571 0.638 0.752 0.809 0.890 0.950

FDP-GAN 0.593 0.749 0.754 0.816 0.893 0.948

aSSIM= structural similarity index measure.

Table 3. Comparison of PSNR metrics for all three networks by using 256-, 128-, 64-, 32-, 16-, and
8-projection informationa

Network used 8-Projection 16-Projection 32-Projection 64-Projection 128-Projection 256-Projection

Raw 17.563 17.825 19.058 22.323 23.268 31.188

CNN(3 layers) 18.127 18.873 20.144 25.369 30.874 32.116

UNet(pure) 20.652 22.550 26.037 29.365 31.384 32.908

ResCBAM 22.125 22.696 27.812 30.649 32.194 33.936

TransUnet 22.334 22.877 27.224 30.168 31.547 33.193

ResUnet 22.372 22.899 27.689 30.223 31.960 33.398

pix2pix 23.373 25.725 28.284 30.675 32.213 33.936

FDP-GAN 23.389 27.113 28.296 30.696 32.343 33.939

aPSNR= peak signal-to-noise ratio.

Table 4. Quantification comparison of ablation experiments (mean±std)a

Methods SSIM(16 projections) PSNR(16 projections)

Only decay 0.570±0.05 22.80±0.05db

Decay and fourier loss 0.610±0.06 23.90±0.05db

Decay and perceptual loss 0.630±0.04 24.40±0.07db

Decay ,fourier loss and perceptual loss 0.710±0.05 26.80±0.09db

aPSNR= peak signal-to-noise ratio; SSIM= structural similarity index measure.

In the above table, the ResUnet architecture is renowned for its capacity to alleviate the issue
of gradient vanishing caused by increasing depth of layers, and has proven its proficiency in
image reconstruction tasks. To further enhance ResUnet’s effectiveness, we incorporated the
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Convolutional Block Attention Module (CBAM) during the training phase. We refer to this
network structure model as ResCBAM. The results from the SSIM and PSNR values in the
Table 1 clearly indicate that FDP-GAN exhibits a remarkable proficiency in handling the fine
details of these samples.

3.2.2. Numerical simulation

In this experiment, the reference image was obtained through reconstruction using 512 projec-
tions(Fig. 5(a)). A reduced number of sensors were used to reconstruct an image, which served
as the artificial input for the network. Additionally, a numerical simulation was conducted to
highlight the presence of streak-type artifacts in the image (Fig. 5(b)). The simulated image was
then used as input to the network to evaluate the de-artifact visualization effect of the model,
with the resulting output map presented in Fig. 5(c). Notably, the theoretical image was regarded
as the reference, while the reconstructed image with a limited sensor configuration was utilized
as an artificial input. The numerical simulations performed in this work are intended to illustrate
the effects of streak-type artifacts in images.

(a) (b) (c)

Fig. 5. Numerical simulation results. (a): Network Target: Numerical Simulation
Results in 512 Dimensions; (b): Tomographic Reconstruction of a Single-Point Absorber:
Numerical Simulation with 16 Detection Positions (Projections) Utilizing a 2D Filtered back
projection(FBP)Algorithm; (c): Visualization of FDP-GAN Network Output Results.

3.2.3. Performance evaluation on PAT datasets

In processing PAT data, the number of sensors plays a crucial role in determining the performance
and functionality of the device [27]. Particularly, in cases where the imaging process involves
a reduced number of sensors, spatial resolution may suffer, resulting in a constrained imaging
range . This can subsequently lead to the introduction of artifacts or under-sampling issues in the
acquired images. Consequently, we employ deep learning techniques specifically to address the
challenges posed by imaging at low sensor counts. We performed our experiments on abdomen
of mice data under a variety of undersampling conditions 16, 32, 64, 128, and 256, where 512
was set as the label.

In Fig. 6, we conduct a comparative analysis of training performance among different models
with varying sensor numbers. Notably, utilizing 16 projections, the FDP-GAN model demonstrates
remarkable image contour and detail, akin to pix2pix with 32 projections. Furthermore, FDP-
GAN exhibits image quality recovery approaching the ground truth value of 512 projections at
32 projections. The SSIM and PSNR metrics in Tables 2 and 3 underscore FDP-GAN’s superior
performance, particularly at lower projection rates of 16 and 8. Figure 7’s radar, line, and box
plots illustrate SSIM and PSNR metrics for the complete test set, validating the efficacy of each
model’s training.

3.2.4. Ablation experiment

In this study, ablation experiments were conducted to optimize and fine-tune the pre-training
parameters in deep learning network architectures. This entailed a series of controlled manipula-
tions where designated elements underwent selective alterations or removal to gauge their impact
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Fig. 6. The training results of different network structures were compared based on the
number of transducers. The comparison was conducted using images of the rat brain with
different transducer numbers, specifically N= 8, N= 16, N= 32, N= 64, and N= 128.

 

(a) (b) (c) (d) (e)

Fig. 7. PAT imaging qualitative analysis visualization results. (a)(c) Radar plot and
discounted line plot presenting SSIM metrics for training results with diverse network
structures and sensor counts. (b)(d) Radar plot and discounted line plot visualizing PSNR
metrics for training outcomes with varying network structures and sensor counts. (e) Box
line plots demonstrating the training results across different network structures and sensor
counts.

Fig. 8. Comparative Analysis of Ground Truth (512 Projections) and Recovered Image
(16 Projections). SubFigures (a), (b), (c), (d), and (e) Showcase the Impact of Sequentially
Adding Decay Function Loss, FFT-Loss, and Perceptual Loss, Respectively.

on the overall model efficacy. Within the framework of the FDP-GAN model, comprehensive
ablation experiments were executed to probe the effects of the decay function, Fourier Transform,
perceptual loss function, and L1 loss on the refinement of contour edge features. Through
judicious activation or deactivation of these constituents, the investigation sought to elucidate
their respective roles in optimizing image quality.

The ablation experiment results (Fig. 8) reveal the impact of incorporating decay function
loss, fft-loss, and perceptual loss sequentially in the configuration with 16 transducers. Images
(b), (c), (d), and (e) in Fig. 8 demonstrate the effects of each variable on different parts of the
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image. Figure 8(a) illustrates the ground truth image as the label image under 512 transducers.
Specifically, (b) enhances overall smoothness, (c) reveals clearer internal details, and (d) further
enhances both internal details and external contours. In (e), after adding fft-loss to (d), brain
slice details and external contours are further highlighted, approaching ground truth. Table 4
provides quantitative evaluation, demonstrating superior image enhancement with metrics such
as PSNR and SSIM. Ablation experiments affirm the denoising and de-artifacting performance
of our FDP-GAN network, preserving intricate high-frequency details.

4. Discussion

This research proposes a novel method for image processing using a Fourier perceptual loss
generative adversarial network (FDP-GAN), which effectively blends a traditional physical
iterative approach with GAN networks. This approach is rooted in a pix2pix GAN module and
includes features such as Fourier transform, a decay function, and perceptual and L1 losses.
Our model’s application to manually collected PAM and PAT datasets showcases exceptional
performance in both quantitative and qualitative assessments. The amalgamation of optical
and acoustic techniques in this integrated methodology holds significant promise for propelling
advanced structural and functional imaging in pivotal biomedical fields like oncology, vascular
biology, and neuroscience. However, FDP-GAN’s effectiveness is diminished when dealing with
highly undersampled imaging or anomalous data. Despite its successes, the method requires
improvements to address challenges with image sampling below the count of 16 sensors and the
influence of grayscale values in focal areas of simulated images on its performance. Also, the
time consumed during the training of multiple modules is an area of concern.

The findings open doors to various possibilities in image processing. The network can be
modified by choosing different constraints as regularization terms or by adopting different
network structures for degraded image recovery in future iterations. Besides, the proposed
architecture could potentially extend to other imaging techniques, like two-photon imaging
[28,29] and second-harmonic imaging [30,31]. The FDP-GAN’s potential goes beyond simple
image refinement. The intersection of AI [32] and high-resolution [33–36] photoacoustic imaging
could offer enhanced early disease detection capabilities and further accelerate the evolution of
AI-driven medical applications.

5. Conclusion

This research presents an innovative deep-learning technique for reconstructing PAT from data
with sparse sampling and finite views. By harnessing the GAN architecture and fine-tuning a
regularized cost function, the method outperforms other deep learning techniques by providing
superior image recovery, even in low-sampling scenarios (16 transducers). The proposed FDP-
GAN is a pivotal advancement in this research, this model is designed to leverage deep features
found both in the time and frequency domains of the original time-axis signal, using data-driven
feature projection parameters.
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